Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564252

RESUMO

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.


Assuntos
Leucemia Mieloide Aguda , Transdução de Sinais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Resistência a Medicamentos , Tirosina Quinase 3 Semelhante a fms/genética
2.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
3.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509561

RESUMO

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Assuntos
Cálcio , Transtornos Mieloproliferativos , Humanos , Fura-2 , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transdução de Sinais , Mutação , Receptores da Eritropoetina/genética , Janus Quinase 2/genética
4.
Transplant Cell Ther ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460727

RESUMO

High-dose chemotherapy followed by autologous stem cell transplantation (auto-SCT) is a well-established treatment option for multiple myeloma and malignant lymphoma patients. It is able to induce long-term progression-free survival (PFS) in both patient groups and even provide a cure in patients with aggressive lymphoma. However, relapse is common and has been associated with the pace and quality of immunologic reconstitution after transplantation, as well as with immune cell exhaustion and immunometabolic defects. We aimed to analyze the dynamics of the prototypical exhaustion marker PD-1 on immune cells during reconstitution on high-dose chemotherapy followed by auto-SCT and its impact on PFS. We performed a comprehensive analysis of exhaustion and metabolic markers on immune cells from myeloma and lymphoma patients undergoing auto-SCT using flow cytometry and NanoString technologies. The expression levels of PD-1 were increased during early reconstitution after transplantation on T cells and natural killer (NK) cells, as well as on monocytes. However, while PD-1 expression in NK cells and monocytes normalized over time, PD-1 expression on T cells demonstrated a variable course. Of note, lymphoma patients with continuously increasing PD-1 expression on T cells after auto-SCT had an inferior median PFS of only 146 days, whereas the median PFS was not reached in the lymphoma patients without such a PD-1 expression pattern. T cells from patients with increased PD-1 expression after auto-SCT exhibited an immunometabolic (over)activation and exhausted phenotype compared to T cells from patients with a low PD-1 expression after transplantation, including higher levels of the glycolytic pacemaker enzyme hexokinase 2 and the inhibitory receptor CTLA-4. In addition, proliferating Ki-67+ T cells were more abundant in patients with high PD-1 expression on T cells compared to those with low expression after auto-SCT (11.9% versus 4.2%). PD-1 expression on T cells might serve as an adverse biomarker for lymphoma patients undergoing auto-SCT; however, further validation by larger prospective studies is required.

5.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012567

RESUMO

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl , Fosforilação Oxidativa , Tapsigargina/farmacologia , Tapsigargina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores Enzimáticos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Oligomicinas/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose
7.
Front Oncol ; 13: 1060112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874131

RESUMO

One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.

8.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36898735

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for a number of hemato-oncological disorders. In fact, allo-HSCT is considered as one of the most successful immunotherapies as its clinical efficacy is based on the donor T-cells' capacity to control residual disease. This process is known as the graft-versus-leukemia (GvL) reaction. However, alloreactive T-cells can also recognize the host as foreign and trigger a systemic potentially life-threatening inflammatory disorder termed graft-versus-host disease (GvHD). A better understanding of the underlying mechanisms that lead to GvHD or disease relapse could help us to improve efficacy and safety of allo-HSCT. In recent years, extracellular vesicles (EVs) have emerged as critical components of intercellular crosstalk. Cancer-associated EVs that express the immune checkpoint molecule programmed death-ligand 1 (PD-L1) can suppress T-cell responses and thus contribute to immune escape. At the same time, it has been observed that inflammation triggers PD-L1 expression as part of a negative feedback network.Here, we investigated whether circulating EVs following allo-HSCT express PD-L1 and tested their efficacy to suppress the ability of (autologous) T-cells to effectively target AML blasts. Finally, we assessed the link between PD-L1 levels on EVs to (T-)cell reconstitution, GvHD, and disease relapse.We were able to detect PD-L1+ EVs that reached a peak PD-L1 expression at 6 weeks post allo-HSCT. Development of acute GvHD was linked to the emergence of PD-L1high EVs following allo-HSCT. Moreover, PD-L1 levels correlated positively with GvHD grade and declined (only) on successful therapeutic intervention. T-cell-inhibitory capacity was higher in PD-L1high EVs as compared with their PD-L1low counterparts and could be antagonized using PD-L1/PD-1 blocking antibodies. Abundance of T-cell-suppressive PD-L1high EVs appears to also impact GvL efficacy as patients were at higher risk for relapse. Finally, patients of PD-L1high cohort displayed a reduced overall survival.Taken together, we show that PD-L1-expressing EVs are present following allo-HSCT. PD-L1 levels on EVs correlate with their ability to suppress T-cells and the occurrence of GvHD. The latter observation may indicate a negative feedback mechanism to control inflammatory (GvHD) activity. This intrinsic immunosuppression could subsequently promote disease relapse.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Leucemia , Humanos , Linfócitos T , Antígeno B7-H1/metabolismo , Transplante Homólogo/efeitos adversos , Leucemia/etiologia , Vesículas Extracelulares/metabolismo
9.
Cancer Immunol Immunother ; 72(6): 1661-1672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36602564

RESUMO

T cell function is central to immune reconstitution and control of residual chronic myeloid leukemia (CML) cells after treatment initiation and is associated with achieving deep molecular response as a prerequisite for treatment-free remission, the ultimate therapeutic goal in CML. ATP-pocket-binding tyrosine kinase inhibitors (TKIs) like imatinib, dasatinib, and nilotinib are widely used for treating CML, but they have shown to inhibit T cell function as an "off-target" effect. Therefore, we tested asciminib, the first-in-class BCR::ABL1 fusion protein inhibitor specifically targeting the ABL myristoyl pocket (STAMP) and compared its effects on T cell function with imatinib, dasatinib, and nilotinib. Whereas all four TKIs inhibited the expression of the co-stimulatory protein CD28, the amino acid transporter CD98, proliferation, and secretion of pro-inflammatory cytokines IFNγ, IL-6, and IL-17A upon T cell stimulation, asciminib had less impact on PD-1, activation markers, and IL-2 secretion. T cells treated with asciminib and the other TKIs maintained their ability to mobilize their respiratory capacity and glycolytic reserve, which is an important surrogate for metabolic fitness and flexibility. Overall, we found milder inhibitory effects of asciminib on T cell activation, which might be beneficial for the immunological control of residual CML cells.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Fusão bcr-abl , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
Arthritis Rheumatol ; 75(4): 517-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245290

RESUMO

OBJECTIVE: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription. Here, we used a BET inhibitor (I-BET151) to target inflammatory tissue priming and to reduce flare severity in a murine experimental arthritis model. METHODS: BALB/c mice were treated by intraperitoneal injection or by local injection in the paw with I-BET151, which blocks the interaction of BET proteins with acetylated histones. We assessed the effects of I-BET151 on acute arthritis and/or inflammatory tissue priming in a model of repeated injections of monosodium urate crystals or zymosan into the mouse paw. I-BET151 was given before arthritis induction, at peak inflammation, or after healing of the first arthritis bout. We performed transcriptomic (RNA-Seq), epigenomic (ATAC-Seq), and functional (invasion, cytokine production, migration, senescence, metabolic flux) analyses of murine and human SFs treated with I-BET151 in vitro or in vivo. RESULTS: Systemic I-BET151 administration did not affect acute inflammation but abolished inflammatory tissue priming and diminished flare severity in both preventive and therapeutic treatment settings. I-BET151 was also effective when applied locally in the joint. BET inhibition also inhibited osteoclast differentiation, while macrophage activation in the joint was not affected. Flare reduction after BET inhibition was mediated, at least in part, by rolling back the primed transcriptional, metabolic, and pathogenic phenotype of SFs. CONCLUSION: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, making them promising therapeutic targets for prevention of arthritis flares in previously affected joints.


Assuntos
Artrite , Proteínas Nucleares , Camundongos , Humanos , Animais , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Exacerbação dos Sintomas , Artrite/tratamento farmacológico , Inflamação
11.
Front Microbiol ; 13: 975436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329851

RESUMO

T cells orchestrate adaptive and innate immune responses against pathogens and transformed cells. However, T cells are also the main adaptive effector cells that mediate allergic and autoimmune reactions. Within the last few years, it has become abundantly clear that activation, differentiation, effector function, and environmental adaptation of T cells is closely linked to their energy metabolism. Beyond the provision of energy equivalents, metabolic pathways in T cells generate building blocks required for clonal expansion. Furthermore, metabolic intermediates directly serve as a source for epigenetic gene regulation by histone and DNA modification mechanisms. To date, several antibiotics were demonstrated to modulate the metabolism of T cells especially by altering mitochondrial function. Here, we set out to systematically review current evidence about how beta-lactam antibiotics, macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols alter the metabolism and effector functions of CD4+ T helper cell populations and CD8+ T cells in vitro and in vivo. Based on this evidence, we have developed an overview on how the use of these antibiotics may be beneficial or detrimental in T cell-mediated physiological and pathogenic immune responses, such as allergic and autoimmune diseases, by altering the metabolism of different T cell populations.

12.
Biomolecules ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36139021

RESUMO

Nowadays, T-cell-based approaches play an increasing role in cancer treatment. In particular, the use of (genetically engineered) T-cells has heralded a novel era for various diseases with previously poor outcomes. Concurrently, the relationship between the functional behavior of immune cells and their metabolic state, known as immunometabolism, has been found to be an important determinant for the success of immunotherapy. In this context, immune cell metabolism is not only controlled by the expression of transcription factors, enzymes and transport proteins but also by nutrient availability and the presence of intermediate metabolites. The lack of as well as an oversupply of nutrients can be detrimental and lead to cellular dysfunction and damage, potentially resulting in reduced metabolic fitness and/or cell death. This review focusses on the detrimental effects of excessive exposure of T cells to fatty acids, known as lipotoxicity, in the context of an altered lipid tumor microenvironment. Furthermore, implications of T cell-related lipotoxicity for immunotherapy will be discussed, as well as potential therapeutic approaches.


Assuntos
Neoplasias , Proteínas de Transporte/metabolismo , Ácidos Graxos/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/metabolismo , Linfócitos T , Fatores de Transcrição/metabolismo , Microambiente Tumoral
13.
Cells ; 11(14)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883619

RESUMO

Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell-T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Vesículas Extracelulares/patologia , Humanos , Imunoterapia Adotiva , Ativação Linfocitária , Subpopulações de Linfócitos T
14.
Sci Rep ; 12(1): 11406, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794135

RESUMO

Previous studies indicated a role of the reconstituting immune system for disease outcome upon high-dose chemotherapy (HDCT) and autologous stem cell transplantation (auto-SCT) in multiple myeloma (MM) and lymphoma patients. Since immune cell metabolism and function are closely interconnected, we used flow-cytometry techniques to analyze key components and functions of the metabolic machinery in reconstituting immune cells upon HDCT/auto-SCT. We observed increased proliferative activity and an upregulation of the glycolytic and fatty acid oxidation (FAO) machinery in immune cells during engraftment. Metabolic activation was more pronounced in T-cells of advanced differentiation stages, in CD56bright NK-cells, and CD14++CD16+ intermediate monocytes. Next, we investigated a potential correlation between the immune cells' metabolic profile and early progression or relapse in lymphoma patients within the first twelve months following auto-SCT. Here, persistently increased metabolic parameters correlated with a rather poor disease course. Taken together, reconstituting immune cells display an upregulated bioenergetic machinery following auto-SCT. Interestingly, a persistently enhanced metabolic immune cell phenotype correlated with reduced PFS. However, it remains to be elucidated, if the clinical data can be confirmed within a larger set of patients and if residual malignant cells not detected by conventional means possibly caused the metabolic activation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfócitos T , Humanos , Células Matadoras Naturais , Metaboloma , Monócitos , Recidiva Local de Neoplasia , Transplante Autólogo
15.
Blood Adv ; 6(21): 5685-5697, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35390134

RESUMO

The bone marrow (BM) stroma represents a protective niche for acute myeloid leukemia (AML) cells. However, the complex underlying mechanisms remain to be fully elucidated. We found 2 small, intracellular, calcium-sensing molecules, S100A8 and S100A9, among the top genes being upregulated in primary AML blasts upon stromal contact. As members of the S100 protein family, they can modulate such cellular processes as proliferation, migration, and differentiation. Dysregulation of S100 proteins is described as a predictor of poor survival in different human cancers, including increased S100A8 expression in de novo AML. Thus, we wanted to decipher the underlying pathways of stroma-mediated S100A8/A9 induction, as well as its functional consequences. Upregulation of S100A8/A9 after stromal cross talk was validated in AML cell lines, was contact independent and reversible and resulted in accumulation of S100A8/A9high cells. Accordingly, frequency of S100A8/A9high AML blasts was higher in the patients' BM than in peripheral blood. The S100A8/A9high AML cell population displayed enhanced utilization of free fatty acids, features of a more mature myeloid phenotype, and increased resilience toward chemotherapeutics and BCL2 inhibition. We identified stromal cell-derived interleukin-6 (IL-6) as the trigger for a Jak/STAT3 signaling-mediated S100A8/A9 induction. Interfering with fatty acid uptake and the IL-6-Jak/STAT3 pathway antagonized formation of S100A8/A9high cells and therapeutic resistance, which could have therapeutic implications as a strategy to interfere with the AML-niche dynamics.


Assuntos
Interleucina-6 , Leucemia Mieloide Aguda , Humanos , Medula Óssea/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Leucemia Mieloide Aguda/metabolismo , Prognóstico
17.
Chemistry ; 28(30): e202104420, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35419888

RESUMO

Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.


Assuntos
Antineoplásicos , Mitocôndrias , Antineoplásicos/química , Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34644537

RESUMO

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Assuntos
Metabolismo Energético , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-33/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Inflamação/etiologia , Ativação de Macrófagos/genética , Mitocôndrias/genética , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Fagócitos , Transdução de Sinais
19.
Nat Cancer ; 2(8): 853-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34423310

RESUMO

Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.


Assuntos
Leucemia Linfocítica Crônica de Células B , Metilação de DNA/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Fosforilação Oxidativa , Proteômica , Serina-Treonina Quinases TOR/genética
20.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289378

RESUMO

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Assuntos
Amiloide/metabolismo , Mieloma Múltiplo/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Associados a Tumor/metabolismo , Microglobulina beta-2/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Microglobulina beta-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA